Blood vessel patterning at the embryonic midline.
نویسندگان
چکیده
The reproducible pattern of blood vessels formed in vertebrate embryos has been described extensively, but only recently have we obtained the genetic and molecular tools to address the mechanisms underlying these processes. This review describes our current knowledge regarding vascular patterning around the vertebrate midline and presents data derived from frogs, zebrafish, avians, and mice. The embryonic structures implicated in midline vascular patterning, the hypochord, endoderm, notochord, and neural tube, are discussed. Moreover, several molecular signaling pathways implicated in vascular patterning, VEGF, Tie/tek, Notch, Eph/ephrin, and Semaphorin, are described. Data showing that VEGF is critical to patterning the dorsal aorta in frogs and zebrafish, and to patterning the vascular plexus that forms around the neural tube in amniotes, is presented. A more complete knowledge of vascular patterning is likely to come from the next generation of experiments using ever more sophisticated tools, and these results promise to directly impact on clinically important issues such as forming new vessels in the human body and/or in bioreactors.
منابع مشابه
VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus.
Angioblasts are precursor cells of the vascular endothelium which organize into the primitive blood vessels during embryogenesis. The molecular mechanisms underlying patterning of the embryonic vasculature remain unclear. Mutational analyses of the receptor tyrosine kinase flk-1 and its ligand vascular endothelial growth factor, VEGF, indicate that these molecules are critical for vascular deve...
متن کاملThe neural tube patterns vessels developmentally using the VEGF signaling pathway.
Embryonic blood vessels form in a reproducible pattern that interfaces with other embryonic structures and tissues, but the sources and identities of signals that pattern vessels are not well characterized. We hypothesized that the neural tube provides vascular patterning signal(s) that direct formation of the perineural vascular plexus (PNVP) that encompasses the neural tube at mid-gestation. ...
متن کاملStem cell-derived endothelial cells/progenitors migrate and pattern in the embryo using the VEGF signaling pathway.
Endothelial precursor cells respond to molecular cues to migrate and assemble into embryonic blood vessels, but the signaling pathways involved in vascular patterning are not well understood. We recently showed that avian vascular patterning cues are recognized by mammalian angioblasts derived from somitic mesoderm through analysis of mouse-avian chimeras. To determine whether stem cell-derived...
متن کاملNeurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube.
Neurovascular development requires communication between two developing organs, the neuroepithelium and embryonic blood vessels. We investigated the role of VEGF-A signaling in the embryonic crosstalk required for ingression of angiogenic vessel sprouts into the developing neural tube. As the neural tube develops, blood vessels enter at specific points medially and ventrally from the surroundin...
متن کاملAn anteroposterior wave of vascular inhibitor downregulation signals aortae fusion along the embryonic midline axis.
Paracrine signals, both positive and negative, regulate the positioning and remodeling of embryonic blood vessels. In the embryos of mammals and birds, the first major remodeling event is the fusion of bilateral dorsal aortae at the midline to form the dorsal aorta. Although the original bilaterality of the dorsal aortae occurs as the result of inhibitory factors (antagonists of BMP signaling) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current topics in developmental biology
دوره 62 شماره
صفحات -
تاریخ انتشار 2004